Teaching Course at the 24th World Congress of Neurology Oct. 27th -31th, 2019, Dubai World Trade Centre, Dubai, UAE

Management of Status Epilepticus: Treating the Seizures vs. the Etiology?

Byung In LEE, MD Professor of Neurology Haeundae Paik Hospital Inje University School of Medicine Busan, KOREA

Learning Objectives

- Understand the importance of timely control of seizure in patients presenting with status epilepticus (SE)
- Understand systemic complications of convulsive SE
- Understand the importance of simultaneous evaluation and diagnosis of the un derlying cause of SE
- Understand the diagnostic approaches of refractory status epilepticus
- Understand the current management strategies of New-onset refractory status epilepticus (NORSE)

Key Messages

- Treatment delay is the most common cause of treatment failure in SE
- Systemic complications of SE are related to both recurrent seizures and therap eutic measures
- SE without known cause (cryptogenic SE) is frequently is usually difficult to con trol with serial use of antiepileptic drugs.
- If initial diagnostic evaluation was negative and SE is refractory, a thorough diag nostic workup including CSF exam is mandatory
- Immune- related causes are the most common etiology of new-onset refractor y status epilepticus (NORSE)

FACTs

SE is a simultaneously a neurologic and systemic emergency carrying significant morbidity and mortality

- Incidence: 18 and 41 patients per year per 100,000 population.
- Approximately 31% to 43% of status epilepticus episodes will become refractory
- Mortality of status epilepticus ranges from 19% to 26% and rises with increasing age.
- Outcomes are usually worse if:
 - The duration of SE is long,
 - The patient is medically ill,
 - The patient has systemic complication.
- HOWEVER, The strongest factor influencing outcome is ETIOLOGY

I.Why should we treat SEIZURES in patients presenting with SE?

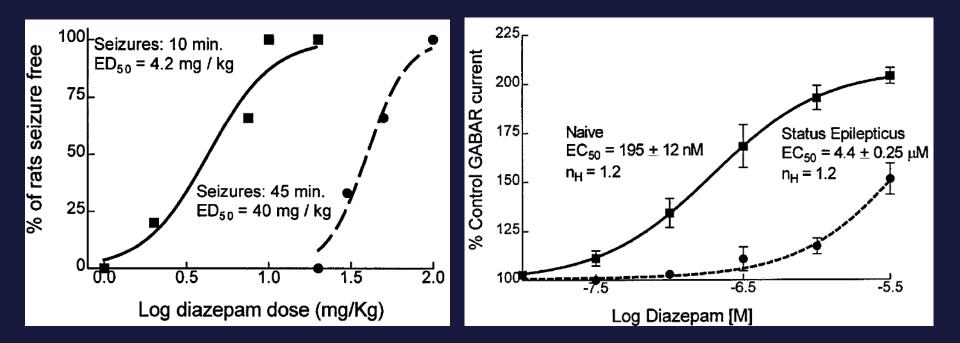
- SE is the result of failure of seizure terminating mechanisms
 - \rightarrow unlikely to be terminated spontaneously without intervention
 - \rightarrow 5 min is the temporal definition of SE (T1 in ILAE operational dimension)
- Series of seizures may cause irreversible neuronal damage
 → 30 min is the temporal window for reversible injury (T2 in ILAE operational dimension)
 → in patients with acute brain insults, seizures may precipitate additional brain damage
- Seizures may precipitate serious systemic complications requiring ICU care
- Compared to isolated seizure, SE may precipitate enduring long-term consequences

I.Why should we treat SEIZURES in SE?

. SE results from failure of mechanisms terminating seizures

- Theodore et al. (Neurology 1994;44:1403-1407)
 - Video-EEG of 120 GTCs of 47 pts.: none lasted for \geq 2 min.
- De Lorenzo et al. (Epilepsia 1999;40:164-9)

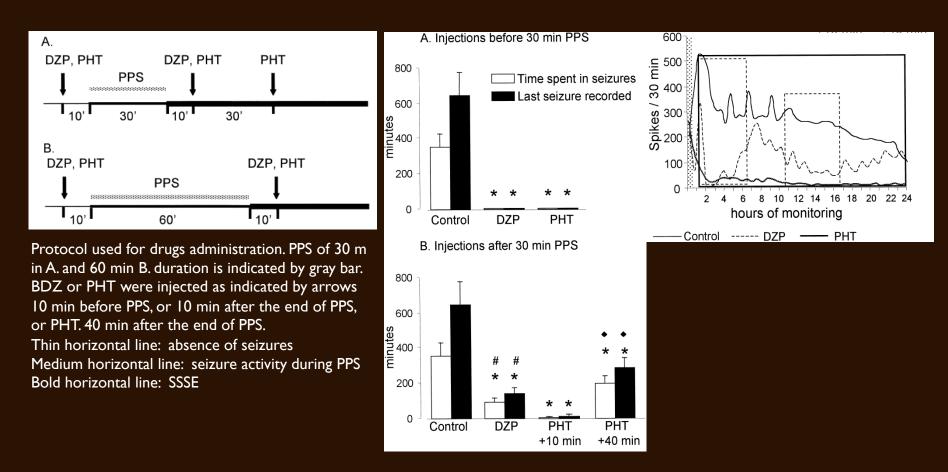
Seizure lasting for	10-29min(n=81)	≥ 30 min(n=226)
Spont. Sz termination	43%	7%
Mortality	2.6%	19%


- Erikson et al. (Neurology 2005;65:1316-1318)
 - Correlation between treatment delay and prolonged SE when treatment started 30 min after onset of SZ → Time dependent decrease in response of AEDs treatment in SE
- Alldredge et al. (Ped Neurol 1996;12:213-216): N=49 episodes of SE
 - Pre-hospital treatment by paramedics (IV or rectal valium) were associated with shorter durati on of SE and lower chance of recurrent seizures in ER

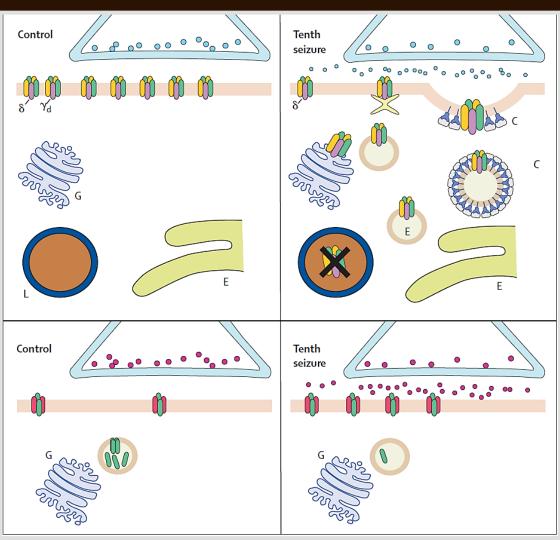
	Prehospital Rx (n' = 19)*	No Prehospital Rx (n' = 26)*	P Value
Duration of SE episode (min) [*]	31.7 ± 19.6	59.7 ± 39.0	.007
Recurrent Seizures in ED (%)	57.9	84.6	.045
Intubation Required (%)	31.6	38.5	.634
ICU Admission (%)	47.4	42.3	.736
Length of ICU Stay (days) [†]	0.9 ± 0.5	2.5 ± 3.2	.180
Length of Hospital Stay (days) [†]	2.0 ± 1.6	4.3 ± 5.1	.081

Time Dependent Decrease of AED Responses in SE - Preclinical Studies -

- Kapur and Macdonald (J Neurosci 1997;17:7532-7540)
 - SE model by lithium + Pilocarpine
 - IV-BDZ: effective at 10 minute after Sz onset


not-effective at 45 min of SE

 The reduction of BDZ sensitivity of dentate granule cell GABARs reflect reduc ed effectiveness of BDZ in treatment of SE


Mechanisms of SE: Self-sustaining SE -Augmentation of Glutamatergic Excitation-

Time-dependent decrease in the effectiveness of AEDs during SE (Mazarati et al., Brain Res. 1998;814:179-185)

Poor efficacy of delayed injection of PHT; Why?

I. Mechanism of SE -Hypothesis-

Model of Receptor Trafficking in transit ion of single Sz to SE

Top: after repeated seizures, the synaptic me mbrane of GABA_A receptors forms clathrin-c oated pits, which internalise as clathrin-coate d vesicles (C), inactivating the receptors beca use they are no longer within reach of the ne urotransmitter. These vesicles develop into e ndosomes (E), which can deliver the receptor s to lysosomes (L) where they are destroyed, or to the Golgi apparatus (G) from where th ey are recycled to the membrane.

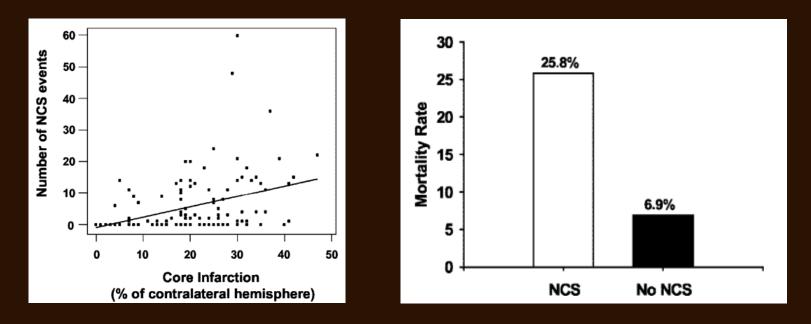
Bottom: by contrast, in NMDA synapses, su bunits are mobilised to the synaptic membra ne and assemble into additional receptors. As a result of this trafficking, the n umber of functional NMDA receptors per sy napse increases whereas the number of funct ional GABA_A receptors decreases.

Time Dependent Decrease of AED Responses in SE - Mechanisms ? -

- Receptor Trafficking of (1) GABAA-receptors from synaptic membrane to the cytoplasm of neurons and (2) NMDA and non-NMDA glutamate receptors fro m cytoplasm to the membrane
- Alterations of ion channels
- DNA methylation, micro-RNA regulation and altered gene expression
- Others: BBB breakdown and *↑*Inflammation
 *↑*P2X7 Receptors in neurons

from Trinka et al.(Current Opin 2016;29:189-198), Naylor et al.(J Neurosci 2005;25;7724-7733), Rajasekaran et al.(Semin Pediatr Neurol 2010;17:136-143), Betjem ann and Lowenstein(Lancet Neurol 2015;14:615-624), Barros-Barbosa et al.(Epilepsia 2016;57:99-110), Ravizza and Vezzani(Neurosci 2006;137:301-308), Engel et al.(FASEBJ 2012;26:1616-1628)

I.Why should we treat SEIZURES in SE?

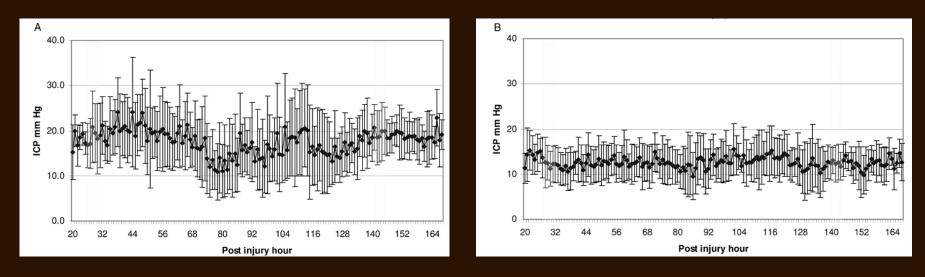

2. SE (beyond T2) may precipitate irreversible Brain Damage

Animal Experiments:

- Recurrent and prolonged electrical ictal discharges precipitate widespread neuronal damages (Meldru m et al. Arch Neurol. 1973; 128 : 10-17)
- Post-stroke rat model (MCA-occlusion) with epidural screw electrodes

(Williams et al. JPET 2004; 311: 220-227)

• Prevention of non-convulsive seizures (NCS) by iv- AEDs was associated with lower mortality and lower volume of infarction

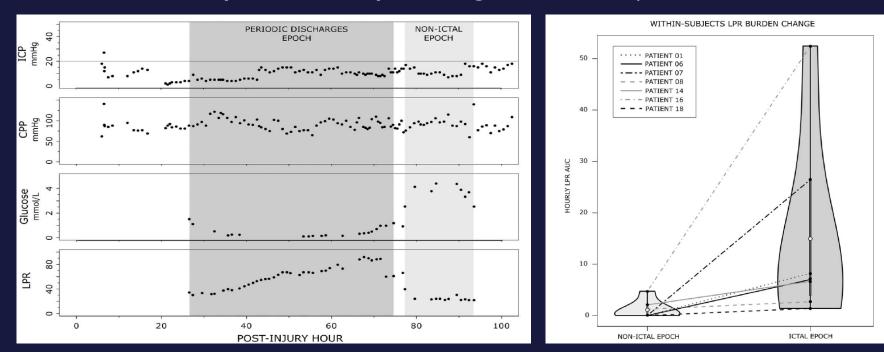


I.Why should we treat SEIZURES in SE?

2. SE (beyond T2) may precipitate irreversible Brain Damage

Clinical Studies

- Synergistic Interactions between NCSE and Acute Brain Insults?
 - > Vespa et al. (Crit Care Med 2007: 35; 2830-2836)
 - 20 patients with moderate to severe traumatic head injury (GCS: 3-13), underwent cEEG and cerebral microdialysis
 - 10 patients with seizures were compared with matched cohort of TBI without seizures
 - Post-traumatic seizures were associated with
 - > Episodic increase in ICP (p < 0.001) and lactate/pyruvate ratio (p < 0.001)
 - > Higher mean ICP (p < 0.001) and mean LPR (p < 0.001)


I. Why should we treat SEIZURES in SE? 2. SE (beyond T2) may precipitate irreversible Brain Damage

Clinical Studies

- Vespa P et al. (Ann Neurol 2016;79:579-590)
- A prospective study of surface and intracortical depth EEG in conjunction with cerebral microdialysis in a cohort of severe TBI patients(n=34)
- Seizures or PDs occurred in 61%(21 of 34): surface EEG in 12 of 21(57.1%)

intracorical depth EEG only in 9 of 21 (42.9%)

- Metabolic crisis as measured by 1 cerebral microdialysis Lactate/Pyruvate ratio(LPR) occurred during seizures or PDs but not during electrically nonepileptic epochs
 - → SZ and PDs represent a therapeutic target for future study

I. Why should we treat SEIZURES in SE?

3. Seizures generate Systemic Complications worsening the outcome

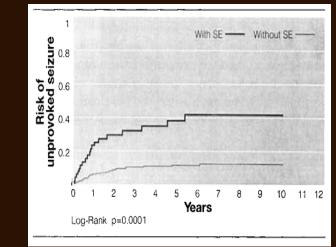
- **Hocker S.** (Epilepsy & Behav 2015;49:83-87)
 - At early stage, a massive catecholamine release and hyperadrenergic state may result in neurocardiogenic, pulmonary, and, sometimes, musculoskeletal or renal injury.
 - latrogenic medical complications related to the use of AEDs, anesthetic drugs etc. are frequent
 - Later, sequelae of prolonged immobility and critical illness add to the cumulative morbidity

Early systemic complications	Complications relating to treatment	Complications of prolonged intensive care unit care
Acidosis (respiratory > metabolic) • Increased CO ₂ production • Decreased CO ₂ removal • Depletion of glycogen stores	Nonanesthetic drugs • Benzodiazepine — respiratory depression, and sedation • Valproic acid — platelet and clotting dysfunction and hyperammonemia • Fosphenytoin/phenytoin — cardiac arrhythmias and hypotension • Levetiracetam — sedation • Lacosamide — PR prolongation, sedation, angioedema, and rash	Venous thromboembolic disease • Pulmonary embolism • Deep venous thrombosis
Hypoxia • Apnea • Upper airway obstruction • Aspiration of gastric contents • Mucous plugging • Neurocardiogenic pulmonary edema	Propofol • Propofol infusion syndrome • Hypotension	Pulmonary complications • Recurrent mucous plugging • Pleural effusions • Atelectasis • Tracheostomy Ventilator-associated pneumonia
Hyperadrenergic state • Hyperpyrexia • Hypertension • Tachycardia • Hyperglycemia • Peripheral leukocytosis	Midazolam • Accumulation in obesity and renal or hepatic dysfunction • Hypotension	Other infectious complications • Catheter-associated urinary tract infections • Sepsis • Bloodstream infections • Pseudomembranous colitis
Cardiac injury • Left ventricular stunning • Cardiac arrhythmias • Cardiac troponin elevation • Electrical conduction abnormalities • Cardiac contraction band necrosis	Barbiturates • Hypotension • Paralytic ileus • Increased risk of infection • Propylene glycol toxicity • Hepatic toxicity • Pancreatic toxicity • Lingual edema • Prolonged half-life	Skin complications • Skin breakdown • Yeast infections
Musculoskeletal injury • Tongue bites • Long bone fractures • Vertebral body compression fractures • Posterior shoulder dislocation	Ketamine • Tachyarrhythmias	Intensive care unit acquired weakness • Critical illness myopathy • Critical illness neuropathy
Renal injury • Rhabdomyolysis and acute renal failure	Inhalational anesthetics • Hypotension • Increased risk of infection • Paralytic ileus Hypothermia • Acid base and electrolyte disturbances • Coagulopathy • Impaired immunity • Cardiac arrhythmias • Paralytic ileus	

Thrombosis

I.Why should we treat SEIZURES in SE?

4. SE may precipitate enduring long-term consequences

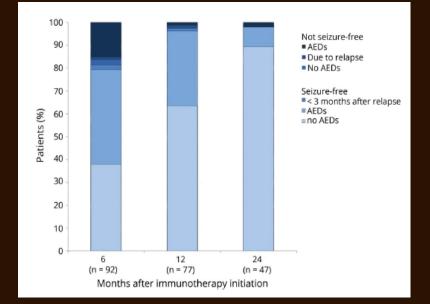

- Records-linkage system of the Rochester Epidemiologic Project from 1965 to 1984
 - N=416, with ASS (SE= 95 vs. isolated Sz= 321)
 - Risk of unprovoked Sz at 10yr-f/u
 - Patients with ASSE vs ASS: 41% vs 13%, (p = 0.0001)
 - Structural Causes (n=206): 45% vs. 17% (p = 0.0007)
 - Metabolic Causes (n=178): 29% vs. 8% (p = 0.02)
 - Anoxic encephalopathy(n=21):57% vs.17%(p=0.15)
- Increased risk of US after ASSE, Why?
 - SE is a marker of severity of injury
 - Damage by SE
 - Biological substrate ass. with SE

Variable	Crude RR	95% CI	Adjusted RR	95% CI
Whole group ^a				
SE	4.0	2.2-7.1	3.3	1.8-6.1
No SE	1.0	Referent	1.0	Referent
By cause ^b				
Structural, SE	6.7	3.0-15.0	7.1	2.9-16.9
Structural, no SE	2.1	0.96-4.6	2.4	1.1-5.5
Metabolic, SE	3.6	1.1-11.5	3.6	1.1-11.9
Metabolic, no SE	1.0	Referent	1.0	Referent
Encephalopathic, SE	16.7	3.6-78.1	18.8	3.6-98.6
Encephalopathic, no SE	2.2	0.29 - 17.4	1.9	0.23-15.3

^aAdjusted RR adjusts for cause of acute symptomatic seizure, age, and sex.

^bAdjusted RR adjusts for age and sex.

RR = rate ratio; CI = confidence interval; SE = status epilepticus.



II. Why should we treat the **ETIOLOGY** in patients presenting with **SE**?

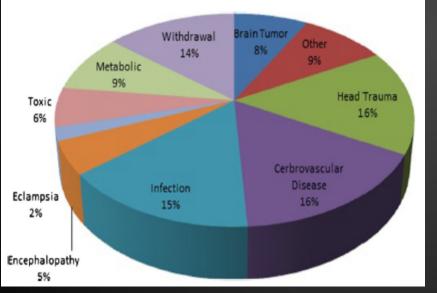
- SE is a symptom caused by the etiology, thus treatment of SE alone is not solving the problem
- Etiology is the most important factor influencing the outcome
- Treatment of SE alone without treating underlying etiology usually fails to stabilize the condition
- Most common cause of control of SE is unknown etiology (e.g., NORSE)
- Etiology of SE is quite diverse requiring different management stratagies in individual patient
- In patients with refractory SE, exhaustive search for underlying etiology is indicated
- Rapid evaluation and diagnosis of etiology is the most important step of SE management

Treatment of Seizures in Autoimmune Encephalitis Marienke A.A.M. et al. Neurology 2019;92:e2185-e2196

- A Nationwide Cohort Study of 153 patients with autoimmune encephalitis (AIE) in Netherla nd (53 LGII, 75 NMDAR, 25 GABABR)
- 110 (72%) patients had epileptic seizures, and 89% of them reached seizure freedom.
 - Seizure freedom was achieved shortly after immunotherapy in 53% of patients compared to 14% of seizure freedom by AEDs only (p < 0.0001)
 - Median time to seizure freedom from AEDs start was 59 days and 28 days from start of immunotherapy (p < 0.0001)
 - At 24 months of FU (n=48), only I patient had developed epilepsy after resolved encephalitis(2%) and 46(98%) patients were seizure free and only 4 of them(9%) were on AEDs therapy

Immunotherapy is crucial for the treatment of seizures in Autoimmune Encephalitis and AED s should be considered as add-on treatment, similar to treatment of other encephalitis symp toms

II. Why should we treat the ETIOLOGY in SE?


- Hesdorffer et al. Neurology 1999;50: 735-741 (N=199, first episode of SE)
 - Acute symptomatic: SE occurred in association with (within a week) the onset of brain trauma, CNS infection, cerebrovascular disease, acute diffuse encephalopathy (primarily anoxia), and toxic/ metab olic insults including alcohol or drug withdrawal.
 - progressive symptomatic: SE in the presence of nonstatic CNS conditions such as CNS tumors and degenerative neurologic diseases
 - Remote symptomatic: SE in the presence of a history of a CNS insult, such as stroke, head trauma, o r meningitis, thought to lead to a static lesion and associated with an increased risk of epilepsy. The t ime between SE and the neurologic insult had to be more than 1 week
 - Idiopathic/cryptogenic : absence of an acute precipitating factor or a history of a prior neurologic i nsult.

Etiology	No of patients(%)
Acute symptomatic	100 (50.0%)
Idiopathic/cryptogenic	27 (13.6%)
Remote symptomatic	39 (19.6%)
Progressive symptomatic	17 (8.5%)
febrile	16 (8.0%)
History of Epilepsy before SE	18 (9.0%)

Etiology of Acute Symptomatic Seizures and Status Epile pticus

Diverse Etiologies

- Metabolic abnormality (30-35%)
- Drugs, Toxins, or ETOH related (10-15%)
- Neurological Insults (50-70%)
- Others

J. F. Annegers et al., Epilepsia, 1995; 36:327-333

Etiology of Acute Symptomatic Seizures

Neurological insults

Cerebrovascular disease: ischemic stroke, hemorrha gic stroke, hypertensive encephalopathy/posterior reversible encephalopathy syndrome Infection: meningitis, encephalitis, brain abscess Head trauma: contusion, subdural hematoma, subara chnoid hemorrhage Anoxic brain injury Neoplasms: primary or secondary brain tumor Demyelinating disorders Postneurosurgical supratentorial procedure PRES Metabolic abnormalities Hyponatremia Hypocalcemia, hypophosphatemia, hypomagnesemi а Uremia, dialysis diseguilibrium syndrome Hypoglycemia, hyperglycemia with hyperosmolar stat е Alterations of serum osmolarity Fever, acidosis **Drugs/toxins** Drug overdose or Side effects e.g., Antibiotics, anticancer drugs, antipsychotics, et C. Illicit drugs (cocaine) Alcohol Chemicals Vitamin deficiency: pyridoxine **Systemic disease** Organ failure (renal, hepatic) Systemic infection/sepsis

II.Why should we treat the ETIOLOGY in SE?

Diagnostic Evaluation in patients with New-onset refractory SE (CMC Kang et al., Seizure 2017;46:24-30)

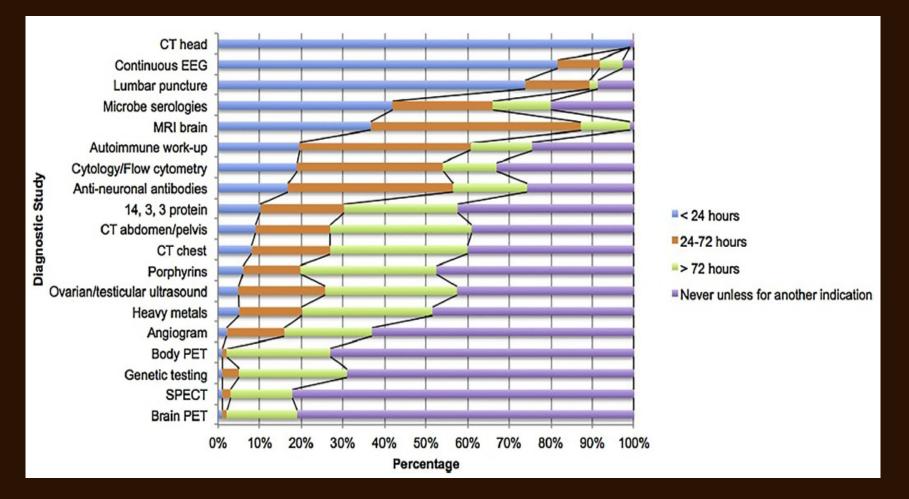


Fig. I. Diagnostic Approach to NORSE. Survey respondents categorized each diagnostic study into time at which they would obtain the test in the setting of NORSE: <24 h, 24–72 h, >72 h, or never unless indicated for another reason.

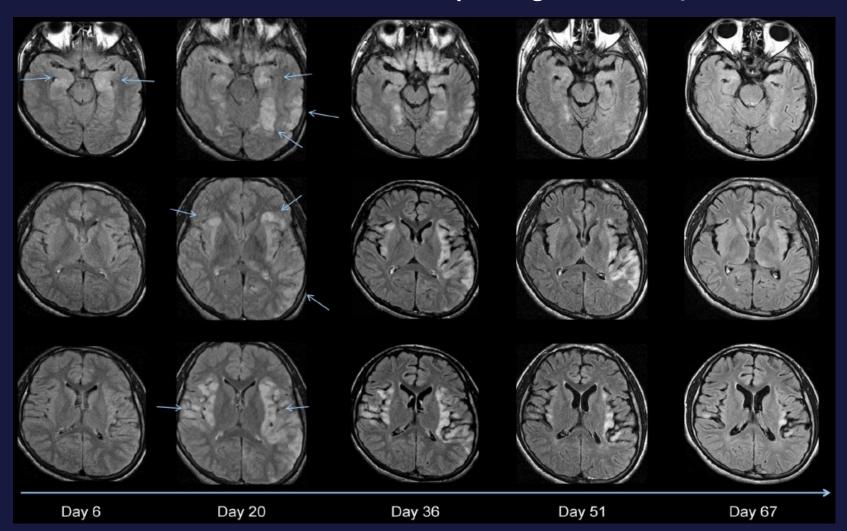
Treatment of Refractory SE NORSE

Proposed Consensus Definition (Epilepsia 2018; DOI:10.1111/epi.14016)

- New-onset Refractory Status Epilepticus(NORSE) is a clincial pr esentation of a new onset of refractory SE in previously healthy individu als without a clear acute or active structural, toxic or metabolic causes
 - NORSE includes patients with viral infections and autoimmune syndromes of ne w onset, even if these are diagnosed in the initial 72 hours
 - NORSE includes patients with remote brain injuries or resolved epilepsy
 - Determination of NORSE requires imaging, CSF, Toxicology, or other blood tests recommended for evaluation of SE
 - **Cryptogenic NORSE** applies to patients with the clinical presentation of NO RSE, but in whom the cause remains unknown after extensive workup
- FIRES(Febrile Infection-Related Epilepsy Syndrome) is a subcate groy of NORSE, applicable for all ages, that requires a prior febrile infecti on starting between 2 weeks and 24 hours prior to onset of refractory SE, with or without fever at onset of SE.

NORSE: Dignostic Categories (Sculier and Gaspard Seizure 2019;68:72-78)

NORSE: Prominent presentation features of the most frequent etiologies.


Categories	*	Most frequent findings	Clinical dues
Unknown	50%		No specific findings
			Prodromal mild febrile illness in 65% of cases
			Typically severe and prolonged SE
Inflammatory and auto-immune	40%	Paraneoplastic limbic encephalitis (Anti-Hu, -Ma2/Ta,	Cognitive, especially memory impairment, behavioral changes, temporal
encephalitis		-CV2/CRMP-5, -amphiphysin, -VGCC, -mGluR5)	lobe seizures, sleep disturbance
			Hu: often more diffuse encephalomyelitis
			Ma2/Ta: hypothalamic dysfunction
			CV2/CRMP5: diffuse encephalomyelitis, chorea
		Surface-binding autoantibodies	
		Anti-NMDAr	Mostly young females
			Prodromal fever, short-term memory loss, psychiatric symptoms,
			hallucinations, oro-lingual dyskinesia, autonomic and respiratory failure
			Children: behavioral changes, movement disorders
			EEG: extreme delta brushes (50%)
		Anti-VGKC complex	Mostly elderly males
			LGI-1: limbic encephalitis, facio-brachial dystonic seizures, SIADH
			Caspr2: episodic ataxia
		Anti-GABA(B)r	Limbic encephalitis
		Anti-GABA(A)r	Multifocal neocortical encephalitis
		Anti-AMPAr	Prominent psychiatric symptoms, cerebellar ataxia
		Anti-Glycine-r	No specific features
		Anti-GAD	No specific features
		Steroid responsive encephalopathy with autoimmune	Rapid-onset dementia, myoclonus, stroke-like episodes
		thyroiditis	Anti-TPO, anti-TG
Infectious encephalitis	10%	HSV1	Temporal involvement
		Enterovirus	Rash, acute lower motor neuron syndrome
		CMV	Immunodeficiency: Gastro-intestinal symptoms, retinitis, pneumonitis
		EBV	Adenopathies, ataxia
		VZV	Immunodeficiency: CNS lymphoma
		Mycoplasma pneumoniae	Rash
		Bartonella henselae	Respiratory symptoms, EEG: extreme spindles
		Arboviruses (West Nile virus, tick-borne virus etc)	Children. Cat-scratch disease with skin lesion and regional adenopathy
			Flu-like episode;
			WNV: parkinsonism, acute lower motor neuron syndrome, EEG: triphasic
Compting discontants	D	CONT A	waves
Genetic disorders	Rare	SCN1A PCDH19	Dravet syndrome Epilepsy and mental retardation limited to female
		CADASIL	Migraine, strokes, visual problems, cognitive deterioration
		CADASIL Mitochondrial disorders	Elevated CSF lactate and stroke-like episodes.
		Mitochondrial disorders MELAS	Decipital seizures, <i>epilepsia partialis continua</i> , liver failure, nystagmus,
		POLG1	ataxia.
		rolgi	alania.

*Proportions mainly reflect adult population. There is a lack of data in pediatric population.

Abbreviations: AMPAalpha-amino-3-hydroxy-5-méthylisoazol-4-propionate; GABA; gamma aminobutyric acid; CADASIL; cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; Caspr2contactin associated protein 2; CMVcytomegalovirus; CNScentral nervous system; CSFcerebrospinal fluid; EBVEpstein-Barr virus; EEGelectroencephalogram; GADglutamic acid decarboxylase; HSVherpes simplex virus; LGI1Leucine-rich glioma inactivated 1; MELASsyndrome of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; NMDA; N-methyl-D-aspartate; PCDHprotocadherin; POLG1mitochondrial DNA polymerase gamma; SIADHsyndrome of inappropriate antidiuretic hormone secretion; SCNneuronal voltage-gated sodium channel; SEstatus epilepticus; TGthyroglobuline; TPOthyroperoxydase; VGKCvoltage gated potassium channel-complex; VZVvaricella-zoster virus; WNVWest-Nile virus.

Cryptogenic NORSE - A Distinctive Syndrome? -

Iizuka T et al. (Neurol Neuroimmunol Neuroinflamm 2017;4:e396: doi:10.1212/NX1.000000000000396)
 The Symmetric MRI lesions are usually absent at the beginning but appear after establishment of RSE, considered S E induced excitotoxic or inflammatory CNS injury → require urgent control of SE

NORSE: Treatment Algorithm (Sculier and Gaspard Seizure 2019;68:72-78)

Initial SE a	nd RSE management: Treat according to guidelines [66]	
	Ļ	
Cryptogenic NORSE with i	ncomplete response to SE treatment:	Etiology identified
	Ļ	
Consider first-line immune	therapies (within the first week of onset):	Manage according to etiology
-IV methylprednisolone	Adults: 1000mg per day for 3 to 5 days	
	Children: 10-30mg/kg (up to 1g) per day for 3 to 5 days	
-IVIG	0.4g/kg per day for 5 days	
-Plasma exchange	3 to 5 exchanges on alternate days	
	Ļ	
If no response to first-line	immune therapies, consider any of the following:	
-IV Rituximab	375mg/m ² weekly, four doses	
-IV cyclophosphamid	500-1000mg/m ² monthly for 3-6months	
-Anakinra	Up to 5mg/kg twice daily	
-Cannabidiol	25mg/kg per day	
-Ketogenic diet		

Fig. 2. NORSE treatment algorithm: Commonly used drugs in NORSE and FIRES with most frequently report ed doses (expert opinion) [66]. Adapted from Gaspard et al, 2018 [39] and van Baalen et al, 2017 [10]. IV=intravenous; IVIG=intravenous immunoglobulin; RSE: refractory status epilepticus, SE: status epilepticus.

CONCLUSION

- Evaluation and management of SE are aimed at:
 - stabilization and avoidance of secondary injury,
 - rapid control of seizures,
 - rapid identification and treatment of the etiology.

In patients with Refractory cryptogenic SE

- Exhaustive search for underlying etiology is indicated
- If the search is unrevealing, trial of immune-modulating therapy is highly indicat ed

Thanks for Your Attention